
@digiterre+44 20 7381 7910digiterre.com info@digiterre.com

WHITE PAPER

THE QUALITY 
PIPELINE
What is a high performing software development team, 
and what can be done to improve performance?
In this white paper, Principal Consultant Stephen 
Masters shares his recommendations for achieving 
consistent quality outputs from teams working across 
an organisation.



Typically, at a large company, there are multiple teams building and maintaining software systems. It is not unusual for 
each team to have its own approach to development when it comes to things like project methodology, technology stack, 
architecture, and testing. With such a variety of approaches, how do we know which systems are more likely to have 
critical bugs? Which systems might cause outages when they are released? Which systems are most vulnerable to attack?

MEASURING PERFORMANCE
When evaluating an IT department or a programme of work, all too often, 
management have a very subjective view of the quality of systems and the 
performance of the teams developing them. This is inevitable in the absence 
of objective measures. To help remedy this, Google’s DevOps Research & 
Assessment (DORA) programme, proposed the concept of Four Key Metrics as a 
guide to the performance of a software development team. The most influential 
metrics they identified are:

	Deployment Frequency - How often a team successfully releases to 		
	 production.
	Lead Time for Changes - How long does it take from code committed to 
running successfully in production?

	Change Failure Rate - The percentage of deployments causing failure in 
	 production.
	Time to Restore Service - How long it takes to recover from a failure in 		

	 production.

By measuring these values and continuously iterating to improve them, we can 
deliver higher quality systems at increased velocity.

The DORA team have developed Four Keys; an open source pipeline which 
gathers these metrics. This is a great start, and in order to capture this data it 
encourages teams to be transparent and make use of tools to track events such 
as change requests, commits, deployments, and issues. It relies on teams being 
well-organised in how they track these things - for example, by linking a commit 
to a change request, a deployment to a commit, and an issue ticket to a failed 
deployment.

HOW DO WE IMPROVE?
Given these metrics that we would like to improve, what are some practical 
steps that we can follow? We will be discussing the following guiding principles in 
the next section, to help achieve these goals: 

	Gather metrics - Make the metrics visible and transparent. The DORA team 	
developed Four Keys; an open source pipeline which gathers these metrics 		
from common tools and provides dashboards.

	Maximise automation - The process from commit, through testing, and into 
deployment should be automated, with minimal manual steps.

	Shift-left - The sooner you can identify an issue in the project lifecycle, the 		
faster and easier it is to fix.

W
H

IT
E 

PA
PE

R

1/5

@digiterre+44 20 7381 7910digiterre.com info@digiterre.com



START WITH THE REQUIREMENTS
Following the shift-left principle, we should consider what we can do to improve 
how we capture requirements. One of the most valuable activities here is to 
hold three amigos discussions, which include the business or product owner, 
a developer, and a tester. By ensuring that these perspectives are represented 
in these sessions, we avoid misunderstandings, and importantly, we capture 
acceptance criteria which can be built into tests. Regular demonstrations of 
progress help ensure that we are on track. By improving how we do these 
things, we avoid spending time building the wrong thing.

THE DEVELOPER’S LOCAL ENVIRONMENT
Once requirements are understood, the focus moves to developers in their local 
environments. Here, a consistent style across a project helps all developers to 
work on it more efficiently, and can be enforced using a linter in a developer’s 
IDE. When building, static analysis tools can highlight issues such as complexity, 
or unreachable code. Developers should be writing extensive unit tests and 
some integration tests. The build tooling can raise warnings if the test coverage 
does not meet a minimum agreed for the project.

By performing these checks locally, the developer gets instant feedback 
on a number of issues. By enforcing agreed styles and test coverage 
targets, there is a reduced likelihood that a colleague will need to reject 
a peer review of the commits, which saves reviewer time, and avoids a 
frustrating cycle of rejections or arguments over code style. Depending on the 
team structure, it can also be useful to include a tool such as ArchUnit, which 
performs checks on the application architecture when the Unit tests run.

2/5

Tools such as Docker-Compose and Kubernetes, enable us to create local
environments which replicate production closely. This is incredibly useful
when building systems comprised of multiple microservices.

W
H

IT
E 

PA
PE

R

@digiterre+44 20 7381 7910digiterre.com info@digiterre.com



AUTOMATE QUALITY GATES
A quality gate is a project milestone where we evaluate whether criteria have 
been met to be ready to go live. Unfortunately, all too often they are carried 
out when a project is “dev complete”, which can lead to a checklist culture and 
delays when huge lists of bugs and vulnerabilities are given to a development 
team to resolve. Usually the amount of time needed to resolve does not match 
the remaining project timeline and budget, which often leads to unreasonable 
demands for developers to work unpaid overtime, overruns, and inevitably the 
release of software with large numbers of known bugs and vulnerabilities of 
varying criticality.

Following Agile principles, we know that if we identify issues against a small 
change early, then it’s much easier to identify the cause and to resolve them. 
How can we move such quality gates earlier in the project lifecycle? Can we 
automate them in order to shorten the feedback cycle? In order to do this, 
the cornerstone of any modern software delivery lifecycle is the Continuous 
Integration / Continuous Deployment (CI/CD) pipeline, using tools such as Azure 
Pipelines, Jenkins, or GitHub Actions. A CI/CD pipeline is generally triggered when 
a developer pushes code from their local branch to a shared version control 
repository such as Git.

Within a pipeline we can use a tool such as SonarQube to evaluate code 
against a set of quality metrics such as:

	Maintainability: Is the code readable? Does the change introduce “code 		
smells” - features of the code which indicate deeper issues?

	Security: Does the change introduce any new vulnerabilities?
	Reliability: Is the automated test coverage sufficient? Are all tests passing?

Every project is different, so the specific metrics you evaluate against can 
vary. If you’re developing a business critical system then you might want 
to enforce more code coverage. If the system is public facing and connects 
to personal data, then it will need more stringent security checks. These 
gates should be agreed early, and when being introduced to an existing 
codebase, they should focus on changes, rather than the overall product. 
That way we ensure that new changes are good quality, but we’re not rejecting 
good changes because they don’t fix all existing issues.

W
H

IT
E 

PA
PE

R

Every project is different, so the specific 
metrics you evaluate against can vary.

Stephen Masters
Principal Consultant with Digiterre ”
“

3/5

@digiterre+44 20 7381 7910digiterre.com info@digiterre.com



AUTOMATE TESTS
In addition to testing early, we also want to be able to test often. By automating 
tests, we can run them fast, and integrate them into the CI pipeline so that 
they are executed every time a change is committed to the version control 
repository. Ideally, the majority of our tests should be runnable in a developer’s 
local environment for even earlier feedback. They should also be able to run 
fast, so that a developer can see quickly whether they have broken something.

A popular concept in the world of testing is the test automation pyramid, 
which guides us to produce a larger number of fast tests that are easy to 
develop and maintain, whilst developing smaller quantities of tests that are 
slower and harder to maintain.

As tests cover more integrated components they tend to be slower to create 
and to run. Therefore we should aim to produce a lot of unit tests, which are 
written directly against functions in the code, are fast to execute and easy to 
debug. At the other end of the spectrum, it is possible to create end-to-end UI 
tests, which can simulate activities that a person might perform on a website by 
interactions with a web browser. These can be valuable, but they can also take 
a lot of time to execute, require a full running environment, take a long time 
to run, and can be very fragile to changes. Tools such as Cypress.io help a lot, 
but they still take a significant amount of time to develop, and benefit a great 
deal from the skills of test automation specialists. Between these extremes, 
should be varying amounts of more integrated tests where we test APIs and 
interactions between components.

As we are aiming to produce a reduced number of slower tests that take more
effort to maintain, we need to prioritise tests that add most value. Therefore
we need to be considering factors such as :

	Which parts of the system are most likely to experience bugs?
	Which parts of the system have the biggest impact if they fail?
	What are the key end-to-end user journeys through the application?

With all this automation, there is still a place for manual testing. However this
should be limited to more exploratory testing, which doesn’t need to be
carried out for every commit.

W
H

IT
E 

PA
PE

R

UI
TESTS

FUNCTIONAL
TESTS

INTEGRATION + API TESTS

UNIT + COMPONENT TESTS

Slower and
harder to
maintain

Faster and
easier to
maintain

4/5

@digiterre+44 20 7381 7910digiterre.com info@digiterre.com



AUTOMATE SECURITY CHECKS
Recently, a critical vulnerability was identified in the popular open source 
logging library, Log4J. Unfortunately, in many companies, teams were unable 
to say whether their applications used a vulnerable version. There is also the 
increasing threat from supply chain attacks, where bad actors deliberately 
modify a dependency to give themselves a backdoor into systems which use it.

A tool such as Anchore Syft can be used to generate a Software Bill of Materials 
(SBOM) containing a list of dependencies within a container, which is incredibly 
valuable when a vulnerability is discovered. If stored with build artefacts in a 
repository such as Sonatype Nexus or Artifactory, this can be a powerful way 
to identify all vulnerable systems across an organisation and when particular 
vulnerabilities were introduced.

Tools such as Grype compare an SBOM with a list of known vulnerabilities. 
Another popular tool is Snyk, which has particular strength identifying 
vulnerabilities in open source libraries. Any time the CI pipeline runs, we can 
identify whether a new vulnerability has been identified or if the change has 
introduced a vulnerable dependency, and the release can be prevented.

AUTOMATE DEPLOYMENTS
The final stage of a pipeline is Continuous Deployment, where we
establish confidence in our ability to deploy the changes to test and 
production environments in a fast and repeatable way, without errors. 
This is where the use of Infrastructure as Code (IaC) tools such as Kubernetes, 
Terraform, Azure Resource Manager Templates, and AWS CloudFormation 
come into play. The initial effort in setting up IaC can be daunting at first, but 
it pays back that investment many times. It ensures that we are able to deploy 
small changes frequently to environments where we can run API and UI tests. 
IaC also makes it possible for a tester to spin up their own environment for 
them to perform exploratory testing without impacting anyone else. If the 
deployment to the test environment has been successful, and the tests against 
that environment pass, then we can deploy to production with confidence.

FINALLY...CONTINUE IMPROVING
There is no perfect process that works for all teams and all systems, but I 
think it is safe to say that all teams would like to be able to deliver
higher quality software at greater velocity. To achieve that, start 
gathering metrics to give you visibility and transparency into the current 
state of your projects, and introduce some of the techniques and tools 
that I have discussed. The tools I have mentioned are not intended to be 
an exhaustive list. There are more that our teams at Digiterre make use 
of, and new tools appear all the time. So gather some metrics, evaluate 
which are the most important for you, shift-left, automate, and keep 
iterating and improving.

W
H

IT
E 

PA
PE

R

5/5

@digiterre+44 20 7381 7910digiterre.com info@digiterre.com

By identifying these issues early, we reduce the risk of attacks in 
production, and we avoid needing to go through a full development 
lifecycle to fix the vulnerabilities when they are discovered.

Stephen Masters 
Principal Consultant with Digiterre ”
“



FIND OUT MORE ABOUT 
DIGITERRE AND HOW WE 
DELIVER QUALITY 
OUTCOMES FOR OUR 
CLIENTS

WHITE PAPER

ABOUT THE AUTHOR
Stephen Masters is a Principal Consultant with Digiterre. 
He has over 25 years’ experience as a solutions architect 
and lead developer, specialising in Big Data Cloud 
Technology, Web Applications, Systems Integration and 
Service Oriented Architecture. Stephen’s career has 
focused on the banking and energy trading sectors, 
where he has been instrumental in the successful 
delivery of a broad range of projects; from developing 
foreign exchange pricing systems, compliance rules 
engines, to optimising power stations.

@digiterre+44 20 7381 7910digiterre.com info@digiterre.com

GillFrood
Cross-Out

https://www.digiterre.com/success_stories/



